Financial contagion and climate change: what can macroprudential regulation do to save the planet

Antonio Cabrales Piero Gottardi

UC3M

Essex

Econpol conference 26.11.2020

- Introduction.
- Model.
- Results.
 - Equilibrium.
 - Efficiency.
 - Heterogeneous clients.
 - Heterogenous costs: asymmetric information.
- Policy implications and conclusion.

shutterstock.com • 546027037

- Research question
 - How will climate risk affect the economy?
 - How does the structure of a (financial) network (both efficient and equilibrium) react to contagion externalities to transmit that risk?
 - ► What is additional effect of heterogeneity and asymmetric information?
 - ▶ What does this mean for macroprudential regulation in its relation to climate?

→

Introduction: model and results

- Two types of firms: intermediaries (banks) and final customers.
- We concentrate on "customers" who will be affected by climate risks: through "stranded assets" or because climate directly affects them. Need not be emitters.
 - Linkages among intermediaries useful to share risks.
 - Linkages with final customers costly but can be compensated.
 - Costs of final customers to indirectly exposed not compensated (crucial externality).
- Main results:
 - Excessive equilibrium intermediation and low risk sharing.
 - Core-periphery structures.
 - Heterogeneity: too high exposure to "bad risks."
 - Asymmetric information: reduced connectivity out of "contagion fear."

< 注入 < 注入 →

A. Contagion in networks

- 1. Allen and Gale (2000), Freixas et al. (2000), Allen et al. (2011), ...
- 2. Nier et al. (2007), Leitner (2005), Blume et al. (2011), ...
- Elliott et al. (2014), Acemoglu et al. (2014), Glasserman and Young (2014), Cabrales, Gottardi and Vega-Redondo (2017)...
- B. Heterogeneity and incomplete information
 - Networks asymm. information. Francetich and Troyan (2012), McBride (2006), Leung (2015), Song and Schaar (2013)...
 - 2. Heterogeneous networks. Billant, Bravard and Sarangi (2011), (2012a), (2012b)...

(E) < E)</p>

- N intermediaries (B) and FN final customers (C) located in a network.
- n_i^{BD} and n_i^{CD} direct *i* connections.
- n_i^{BI} and n_i^{CI} indirectly i connections.
- $n_i^{CBD} C$ (not including *i*) directly connected to same *B* as *i*.

$$u_B = g\left(n_i^{BD} + n_i^{BI}\right) - c\left(n_i^{CI} + n_i^{CD}\right) + t_i - \alpha l_i$$
$$u_C = f\left(n_i^{BD}\right) - cn_i^{CBD} - t_i$$
$$f\left(n_i^{BD}\right) = \begin{cases} K_B \text{ if } n_i^{BD} \ge 1\\ 0 \text{ if } n_i^{BD} = 0 \end{cases}$$

and $g^{\prime}\left(.\right)\geq0,\,g^{\prime\prime}\left(.\right)<0$

ヨト イヨト ヨー わへで

- f(.) and g(.) benefits for B and the C types of linkages to B, while c cost of linkages C.
- t_i net transfers by C to direct B contacts to compensate for losses.
- l_i direct links of B to other B, α (small) cost for those links.
- Linkages among B types risk sharing/trading possibilities.

ヨト・モヨト

- For C a linkage to B represents resources/borrowing.
 - A B and C linkage a benefit for C a cost for B.
 - ► Via linkages among *B*, obligations extend to all *B* directly or indirectly linked.
 - ▶ Benefit for C of linkage with B decreasing in number of other C linked toe same B.

Assumption 1

We assume F is sufficiently large, so that $F > K_B/2c$.

Main Result 1

At the optimum each component has a core periphery structure where every C firm is linked to only one B firm, B firms are minimally connected among them and each one should be linked to the same number of C types

$$C_B^* = \max\left\{\frac{K_B - (n_B - 1)c}{2c}, 0\right\}$$

$$\phi(n_B) \equiv n_B g (n_B - 1) + \frac{n_B}{4c} (\max \{K_B - (n_B - 1)c, 0\})^2$$

Proposition 1

If $\phi(n_B)$ is either everywhere convex or everywhere concave all components are identical and n_B^* is closest feasible point to maximizer of $\phi(n_B) / n_B$.

- Equilibrium networks from optimal bilateral contracting choices.
- Notion of equilibrium: features of bilateral (Goyal, Vega Redondo 2007) and pairwise equilibrium (Bloch, Jackson 2007):
- Network and transfers from C to B without pairwise profitable deviation:
 - deletion of any subset of their existing linkages and
 - formation of a new linkage between the two firms (possibly with transfer).

글 에 에 글 어

Proposition 2

In equilibrium, a number $\overline{C} = \min \{F, \frac{K_B - c}{c}\}$ of C types is linked to each B type. And all components are minimally connected trees and all of them, except at most one, have a number of B types, \overline{n}_B , that satisfies

$$\bar{n}_B \in \arg\max_{n_B} \left\{ g \left(n_B - 1 \right) - c n_B \overline{C} \right\},\tag{1}$$

with the remaining component, if it exists, having a number of B types strictly smaller than \bar{n}_B .

Main Result 2

The number \bar{n}_B of B types in all (but at most one) components in equilibrium is smaller than the social optimum $\bar{n}_B \leq n_B^*$. Also the number of C for every B in equilibrium is larger than the social optimum $\bar{C} \geq C^*$ for $C^* \geq 1$.

•
$$\overline{C} = \min\left\{F, \frac{K_B - c}{c}\right\} \ge C_B^* = \max\left\{\frac{K_B - (n_B - 1)c}{2c}, 0\right\}$$
, when $C_B^* \ge 1$.

• Compare marginal value of new connection: equilibrium vs. efficient.

$$g'\left(n_B-1\right)-c\bar{C}$$

$$g'(n_B - 1) - cC^*(n_B)$$
 if $n_B^* \ge K_B/c + 1$, otherwise $g'(n_B - 1)$.

- Contracting externality in the formation of financial linkages leads to:
 - excessive level of intermediation $\bar{C} \ge C^*$ (B do not internalize risk on contacts).
 - ▶ inefficiently low level of risk sharing by *B* firms, who anticipate large number of harmful *C* contacts.
- Each component except one reaches optimal n_B , conditional on C. Remaining B (conditionally inefficient) smaller component (rearranging would require non-pairwise compensations).

We have some robustness checks on assumptions.

(B) < (B)</p>

Heterogeneous clients: model

- Now there are two types of C players", C_1 and C_2 .
- C_1 has lower direct cost and a bigger cost on the indirect connections than C_2

$$u_B = g\left(n^{BD} + n^{BI}\right) - c_A\left(n_i^{C_1D} + n_i^{C_2I}\right) - c_F\left(n_i^{C_2D} + n_i^{C_1I}\right) + t_i - \alpha l_i$$

with $c_A < c_F$

$$u_{C_{1}} = f(n_{i}^{BD}) - c_{D}n_{i}^{BC_{1}D} - c_{I}n_{I}^{BC_{2}D} - t_{i}$$

$$u_{C_{2}} = f(n_{i}^{BD}) - c_{I}n_{i}^{BBC_{1}D} - c_{D}n_{i}^{BC_{2}D} - t_{i}$$

$$f_j\left(n_i^{BD}\right) = \begin{cases} K_B \text{ if } n_i^{BD} \ge 1\\ 0 \text{ if } n_i^{BD} = 0 \end{cases}$$

ヨトメヨト

Heterogeneous clients: efficiency and equilibrium

- Equilibrium and efficiency qualitatively the same as before.
- Novelty: composition/proportion of C_1 to C_2 in equilibrium and efficient.

Main Result 3

 $\widehat{C}_1 > \widehat{C}_2$ iff $c_F > c_A$. In contrast, $C_1^*(n_B) < C_2^*(n_B)$ iff $n_B^* > 1$

- C_1 more privately profitable and more socially harmful than C_2 ($c_F > c_A$).
 - In equilibrium there are more C_1 than C_2 .
 - Opposite to what efficiency requires, more C_2 than C_1 (independent of c_D and c_I).
- Heterogeneity: increased inefficiency, through matching of customers.

(E) < E)</p>

Heterogeneous costs and asymmetric information

- Different type of heterogeneity, in cost of providing services to customers.
- Two types of B: H and L, assume $c_H > c_L$. Payoff for C as before.

$$u_{B_{ij}} = g\left(n_i^{BD}\right) - c_j\left(n_i^{BCD}\right) + t_i - \alpha l_i$$
$$u_C = f\left(n_i^{BD}\right) - cn_i^{BCD} - t_i$$
$$f\left(n_i^{BD}\right) = \begin{cases} K_B \text{ if } n_i^{BD} \ge 1\\ 0 \text{ if } n_i^{BD} = 0 \end{cases}$$

- Type of B known to C. Then, in equilibrium:
- $\overline{C}_L = \min\left\{F, \frac{K_B c_L}{c}\right\} \ge \overline{C}_H = \min\left\{F, \frac{K_B c_H}{c}\right\}$

프 () () () ()

Heterogeneous costs and asymmetric information

- Under complete information: assortative matching.
- *H* types only want to match to other *H* types who have less connections.
- L would want to match H but blocked, too many externalities (C connections).
- Under asymmetric information, marginal cost of linkage for type L is lower
- hence $n_{B_L}^{AI} > n_{B_L}^{CI}$, thus the low cost types connect more under AI.
- Similarly $n_{B_H}^{AI} < n_{B_H}^{CI}$, so high cost types connect less under AI. But overall

Main Result 4

$$TC_{AI} - TC_{CI} < 0$$

Conclusion

- Stylized model of link formation between financial firms when:
 - engage in intermediation activity with others, and do not internalize default contagion externalities.
- Main results are:
 - Optimal network exhibits a core periphery structure.
 - Optimal structure cannot be obtained as a result of individual decisions:
 - excessive intermediation limits extent of risk sharing in the system.
 - Heterogeneous credit quality or in ability to resist contagion risk (especially under asymmetric information) amplifies inefficiency.
 - Macroprudential regulators have the mandate and the tools to avoid this problem.
 - ► They can increase regulatory capital for weighted loans to "brown" firms.
 - One can use the mandate to save banks in order to save the planet.

э

★ Ξ ► ★ Ξ ►